Stem cell factor enhances the survival but not the self-renewal of murine hematopoietic long-term repopulating cells.
نویسندگان
چکیده
The effects of stem cell factor (SCF) have been tested on a murine bone marrow subpopulation (RH123lo, Lin-, Ly6A/E+) that is highly enriched for long-term hematopoietic repopulating cells. SCF maintained cells from this population with long-term repopulating ability for up to 10 days in vitro. However, compared with freshly isolated cells, the level of engraftment in vivo by the cultured cells declined during the in vitro culture period, suggesting that SCF alone was unable to stimulate the self-renewal of long-term repopulating cells. By direct visualization of cultures, only small numbers of cells survived and rarely underwent cell division. However, SCF did directly stimulate proliferation of a population (Rh123med/hi,Lin-,Ly6A/E+) enriched for short-term repopulating cells. These data suggest that stem cell differentiation is associated with the development of mitogenic activity by SCF at least in some progenitor cell populations.
منابع مشابه
Evi1 is essential for hematopoietic stem cell self-renewal, and its expression marks hematopoietic cells with long-term multilineage repopulating activity
Ecotropic viral integration site 1 (Evi1), a transcription factor of the SET/PR domain protein family, is essential for the maintenance of hematopoietic stem cells (HSCs) in mice and is overexpressed in several myeloid malignancies. Here, we generate reporter mice in which an internal ribosome entry site (IRES)-GFP cassette is knocked-in to the Evi1 locus. Using these mice, we find that Evi1 is...
متن کاملNotch2 governs the rate of generation of mouse long- and short-term repopulating stem cells.
HSCs either self-renew or differentiate to give rise to multipotent cells whose progeny provide blood cell precursors. However, surprisingly little is known about the factors that regulate this choice of self-renewal versus differentiation. One candidate is the Notch signaling pathway, with ex vivo studies suggesting that Notch regulates HSC differentiation, although a functional role for Notch...
متن کاملAll-trans retinoic acid enhances the long-term repopulating activity of cultured hematopoietic stem cells.
The retinoic acid receptor (RAR) agonist, all-trans retinoic acid (ATRA), is a potent inducer of terminal differentiation of malignant promyelocytes, but its effects on more primitive hematopoietic progenitors and stem cells are less clear. We previously reported that pharmacologic levels (1 micromol) of ATRA enhanced the generation of colony-forming cell (CFC) and colony-forming unit-spleen (C...
متن کاملSelf-Renewal of Multipotent Long-Term Repopulating Hematopoietic Stem Cells Is Negatively Regulated by FAS and Tumor Necrosis Factor Receptor Activation
Multipotent self-renewing hematopoietic stem cells (HSCs) are responsible for reconstitution of all blood cell lineages. Whereas growth stimulatory cytokines have been demonstrated to promote HSC self-renewal, the potential role of negative regulators remains elusive. Receptors for tumor necrosis factor (TNF) and Fas ligand have been implicated as regulators of steady-state hematopoiesis, and i...
متن کاملKruppel-like factor 7 overexpression suppresses hematopoietic stem and progenitor cell function.
Increased expression of Kruppel-like factor 7 (KLF7) is an independent predictor of poor outcome in pediatric acute lymphoblastic leukemia. The contribution of KLF7 to hematopoiesis has not been previously described. Herein, we characterized the effect on murine hematopoiesis of the loss of KLF7 and enforced expression of KLF7. Long-term multilineage engraftment of Klf7(-/-) cells was comparabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 84 2 شماره
صفحات -
تاریخ انتشار 1994